EFFICIENTLY MINING CLOSED INTERVAL PATTERNS WITH CONSTRAINT PROGRAMMING

D. Bekkoucha¹, A. Ouali¹, P. Boizumault¹, B. Crémilleux¹

¹Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

djawad.bekkoucha@unicaen.fr

anr[®] agence nationale de la recherche

Outline

Context:

Mining numerical datasets

Interval patterns

- Contributions:
 - Reified model
 - Global constraint
- Experimental results
- Conclusion and Perspectives

Data Mining

Data mining reveals implicit relationships in a large volume of data

	Height	Weight	Age	Severe form
	m_1	m_2	m_3	c
g_1	155	74	80	1
g_2	176	99	74	0
g_3	167	73	28	0
g_4	153	76	52	1
g_5	190	99	76	0

Table: Numerical dataset ${\cal N}$

People with a height between [153, 155], weight between [74, 76] and age between [52, 80] are more exposed to extreme forms of a certain disease

Notation

- $\blacktriangleright \ \mathcal{G}: \text{Set of objects in } \mathcal{N}$
- $\blacktriangleright \ \mathcal{M}: \text{Set of attributes in } \mathcal{N}$
- ▶ \mathcal{N}_m : Set of numerical values contained in attribute $m \in \mathcal{M}$

	Height	Weight	Age
	m_1	m_2	m_3
g_1	155	74	80
g_2	176	99	74
g_3	167	73	28
g_4	153	76	52
g_5	190	99	76

Table: Numerical dataset ${\cal N}$

Interval Patterns

Definition

An interval pattern ${\cal V}$ is a vector of $|{\cal M}|$ intervals where each interval corresponds to an attribute $m\in {\cal M}$

$$\mathcal{V} = \langle [a_i, b_i]_{i \in \{1, \dots, |\mathcal{M}|\}} \rangle, \ a_i, b_i \in \mathcal{N}_i \quad \land \quad a_i \leq b_i$$

	Height	eight Wei	ight /	Age
	m_1	m_1 m_1	i_2	m_3
$egin{array}{c} g_1 \ g_2 \ g_3 \ g_4 \end{array}$	155 176 167 153	176 9 167 7	74 19 73 76	80 74 28 52
g_5	190	190 9	9	76

Table: Numerical dataset ${\cal N}$

Interval Patterns

Definitions

- $\blacktriangleright \quad \text{Cover: } cover(\mathcal{V}) = \{g \in \mathcal{G} | \quad \bigwedge_{m \in \mathcal{M}} \underline{x}_m \leq v_{g,m} \leq \overline{x}_m \ s.t. \ v_{g,m} \in \mathcal{N}_m \}$
- Frequency: $freq(\mathcal{V}) = |cover(\mathcal{V})|$
- **Description:**

 $desc(G \subseteq \mathcal{G}) = \langle [a_m, b_m] \rangle_{m \in \{1, \dots, |\mathcal{M}|\}} \ s.t. \ a_m = min(\{v_{g,m} \mid g \in G\}) \ \land \ b_m = max(\{v_{g,m} \mid g \in G\})$

	Height	Weight	Age
	m_1	m_2	m_3
g_1	155	74	80
g_2	176	99	74
g_3	167	73	28
g_4	153	76	52
g_5	190	99	76

Table: Numerical dataset ${\cal N}$

Example

- $cover(\langle [153, 155] [73, 76] [52, 80] \rangle) = \{g_1, g_4\}$
- ▶ $freq(\langle [153, 155][73, 76][52, 80] \rangle) = |\{ g_1, g_4 \}| = 2$
- $desc(\{g_1, g_4\}) = \langle [153, 155][74, 76][52, 80] \rangle$

Interval Patterns

Limitations

The enumeration of all the interval patterns leads to:

- Combinatorial explosion in the number of patterns
- Redundancy of the extracted interval patterns

Example

- \blacktriangleright ([153, 155][73, 76][52, 80]), { q_1, q_4 }
- \blacktriangleright ([153, 155][74, 76][28, 80]), { g_1, g_4 }
- \blacktriangleright ([153, 167][74, 76][52, 80]), { q_1, q_4 }
- \blacktriangleright ([153, 155][74, 76][52, 80]), { q_1, q_4 }

Redundant Interval Patterns

Table: Numerical dataset \mathcal{N}
--

	Height	Weight	Age
	m_1	m_2	m_3
g_1	155	74	80
g_2	176	99	74
g_3	167	73	28
g_4	153	76	52
g_5	190	99	76

Closed Interval Patterns

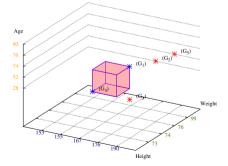
Closure

An interval pattern \mathcal{V} is closed if there does not exists \mathcal{V}' sharing the same support and having strictly smaller intervals than those of \mathcal{V} .

 $close(\mathcal{V}) \iff desc(cover(\mathcal{V})) = \mathcal{V}$

Example for 3 attributes

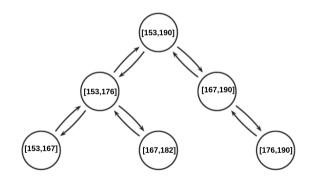
- $\blacktriangleright \langle [153, 155] [73, 76] [52, 80] \rangle, \{g_1, g_4\}$
- $\blacktriangleright \langle [153, 155] [74, 76] [28, 80] \rangle, \{g_1, g_4\}$
- $\blacktriangleright \langle [153, 167] [74, 76] [52, 80] \rangle, \{g_1, g_4\}$
- ► $\langle [153, 155] [74, 76] [52, 80] \rangle, \{g_1, g_4\}$ Condensed representation



Mining Closed Interval Patterns

Existing approaches

- Dedicated approach: [Kaytoue and al. 2011] present MinIntChange, a dedicated approach for mining closed interval patterns
 - Lack of genericity



Declarative Approaches for Binary data

- Itemsets: [De Raedt et al. KDD 2008], [khiari et al. CP 2010], [Schaus et al. CP 2017], [Mamaar et al. CP 2016], [Belaid et al. SDM 2019]
- Sequential patterns: [Kemmar et al. Constraints 2017], [Aoga et al. ECML/PKDD 2016], [Négrevergne et al. CPAIOR 2015]
- Sky Patterns: [Ugarte et al. 2017], [Vernerey et al. IJCAI 2022], [Négrevergne et al. ICDM 2013], [Ugarte et al. ICTAI 2015]
- Top-K patterns: [Jabbour et al. ECML/PKDD 2013], [Hidouri et al. DaWaK 2021],

What about numerical Data ?

Binarization

- Binarize numerical data with Interordinal Scaling to avoid information loss
- Create pairs of binary attributes (items) for each numerical value: $\forall m \in \mathcal{M}, g \in \mathcal{G} \ m \leq w_{g,m}$ and $m \geq w_{g,m}$

	Height	Weight	Age											
	m_1	m_2	m_3	IS			He	ght		Weight		A	ge	
				binarization		$m_1 \le 153$	$m_1 \ge 153$	$m_1 \le 155$	$m_1 \ge 155$		$m_3 \le 28$	$m_3 \ge 28$	$m_3 \le 52$	$m_3 \ge 52$
g_1	155	74	80		g_1	0	1	1	1		0	1	0	1
					g_2	0	1	0	1		0	1	0	1
g_2	176	99	74		g_3	0	1	0	1		1	1	1	1
g_3	167	73	28		g_4	1	1	1	0		0	1	0	1
g_4	153	76	52	· · · ·	g_5	0	1	0	1		0	1	0	1
g_5	190	99	76											
				Dive										

Contributions

Since there is no declarative approach for mining closed interval patterns, we present:

- A reified model named CP4CIP for mining closed interval patterns without prior binarization
- A global constraint named GC4CIP for mining closed interval patterns without prior binarization

Example

$$\mathcal{D}(\underline{x}_{m_1}) = \mathcal{D}(\overline{x}_{m_1}) = \{153, 155, 167, 176, 190\}$$

$$\mathcal{D}(\underline{x}_{m_2}) = \mathcal{D}(\overline{x}_{m_2}) = \{73, 74, 76, 99\}$$

$$\mathcal{D}(\underline{x}_{m_3}) = \mathcal{D}(\overline{x}_{m_3}) = \{28, 52, 74, 76, 80\}$$

Table: Numerical dataset $\mathcal N$

First Model using Reified Constraints

Modeling intervals

Decision variables: Variables representing the borders of intervals:

$$\forall m \in \mathcal{M}, \ \underline{x}, \overline{x}: \ \mathcal{D}(\underline{x}_m) = \mathcal{D}(\overline{x}_m) = \mathcal{N}_m$$

	Height	Weight	Age
	m_1	m_2	m_3
g_1	155	74	80
g_2	176	99	74
g_3	167	73	28
g_4	153	76	52
g_5	190	99	76

Inclusion

Inclusion variables: $\forall m \in \mathcal{M}, g \in \mathcal{G}, B_{g,m} : \mathcal{D}(B_{g,m}) = \{0, 1\}$

Used in the inclusion constraints:

$$\forall m \in \mathcal{M}, \ g \in \mathcal{G}, \ B_{g,m} = 1 \iff \min(\mathcal{D}(\underline{x}_m)) \le v_{g,m} \le \max(\mathcal{D}(\overline{x}_m))$$

Example

	Height	Weight	Age
	m_1	m_2	m_3
g_1	155	74	80
g_2	176	99	74
g_3	167	73	28
g_4	153	76	52
g_5	190	99	76

Table: Numerical dataset ${\cal N}$

Coverage

Coverage variables: $\forall g \in \mathcal{G}, \ y_g : \mathcal{D}(y_g) = \{0, 1\}$

Used in coverage constraints

$$\forall g \in \mathcal{G}, y_g = 1 \iff \sum_{m \in \mathcal{M}} B_{g,m} = |\mathcal{M}|$$

Example

	$Height \in [153, 155]$	Weight $\in [74, 76]$	$Age \in [52, 80]$
g_1	1	1	1
g_2	0	0	1
g_3	0	0	0
g_4	1	1	1
g_5	0	0	1

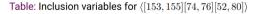


Table: coverage variables

Closure

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \mathcal{D}(\underline{H}_{g,m}) = \{v_{g,m}\} \cup \{\mathcal{N}_m^{\uparrow} + 1\} \\ \mathcal{D}(\overline{H}_{g,m}) = \{v_{g,m}\} \cup \{\mathcal{N}_m^{\uparrow} + 1\} \\ \end{array} \end{array} \\ \begin{array}{l} \mathcal{D}(\underline{H}_{g,m}) = \{v_{g,m}\} \cup \{\mathcal{N}_m^{\downarrow} - 1\} \\ \end{array} \end{array}$$

Used in closure constraints

$$\forall g \in \mathcal{G}, m \in \mathcal{M} \left\{ \begin{array}{l} y_g = 1 \implies \mathcal{D}(\underline{H}_{g,m}) = \mathcal{D}(\overline{H}_{g,m}) = \{v_{g,m}\}\\ y_g = 0 \implies \mathcal{D}(\underline{H}_{g,m}) = \{\mathcal{N}_m^{\uparrow} + 1\}, \ \mathcal{D}(\overline{H}_{g,m}) = \{\mathcal{N}_m^{\downarrow} - 1\} \end{array} \right.$$

$$\forall m \in \mathcal{M} \left\{ \begin{array}{l} \underline{x}_m = \min(\mathcal{D}(\underline{H}_{1,m}), \mathcal{D}(\underline{H}_{2,m}), ..., \mathcal{D}(\underline{H}_{|\mathcal{G}|,m})), \\ \overline{x}_m = \max(\mathcal{D}(\overline{H}_{1,m}), \mathcal{D}(\overline{H}_{2,m}), ..., \mathcal{D}(\overline{H}_{|\mathcal{G}|,m})) \end{array} \right.$$

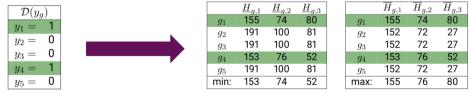


Table: coverage variables

Table: Values of closure variables $\underline{H}_{q,m}$ and $\overline{H}_{g,m}$ for the running example.

Model complexity

Variables:

- ▶ Interval representation: $2 \cdot |\mathcal{M}|$
- ► Coverage representation: |*G*|
- Closure representation: $3 \cdot |\mathcal{G}| \cdot |\mathcal{M}|$

Constraints:

- Inclusion constraints: $|\mathcal{G}| \cdot |\mathcal{M}|$
- ► Coverage constraints: |*G*|
- Closure constraints: $4 \cdot |\mathcal{G}| \cdot |\mathcal{M}| + 2 \cdot |\mathcal{M}|$

Can we do better ?

Why global constraints ?

- Dedicated filtering algorithm
- Captures global relations within variables
- Simplifies the problem modeling
- Preserves the genericity

$\overline{GC4CIP}$

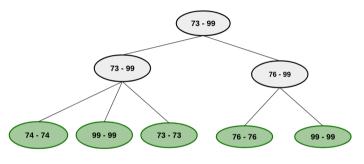
Let \mathcal{V} an interval pattern. The $GC4CIP_{\mathcal{N},\theta}(\mathcal{V})$ global constraint holds iff:

- $\ensuremath{\mathcal{V}}$ is closed, and
- \mathcal{V} is frequent (i.e. $\mathit{freq}(\mathcal{V}) \geq \theta$)

Specific data structure

	Height	Weight	Age
	m_1	m_2	m_3
g_1	155	74	80
g_2	176	99	74
g_3	167	73	28
g_4	153	76	52
g_5	190	99	76

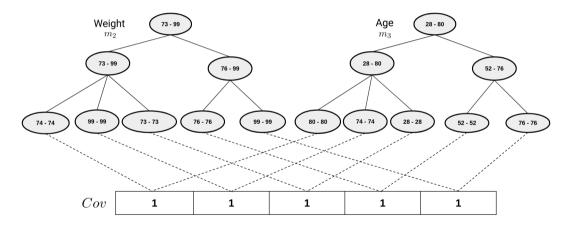
Table: Numerical dataset ${\cal N}$



Tree corresponding to the weight attribute in $\ensuremath{\mathcal{N}}$

Specific data structure

$$\blacktriangleright \ \mathcal{D}(\underline{x}_{m_2}) = \mathcal{D}(\overline{x}_{m_2}) = \{73, 74, 76, 99\}, \ \mathcal{D}(\underline{x}_{m_3}) = \mathcal{D}(\overline{x}_{m_3}) = \{28, 52, 74, 76, 80\}$$



Specific data structure

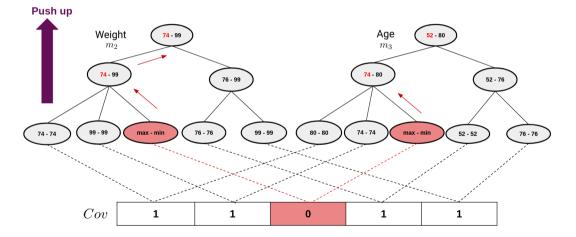
•
$$\mathcal{D}(\underline{x}_{m_2}) = \mathcal{D}(\overline{x}_{m_2}) = \{ 73, 74, 76, 99 \}, \mathcal{D}(\underline{x}_{m_3}) = \mathcal{D}(\overline{x}_{m_3}) = \{ 28, 52, 74, 76, 80 \} \}$$

Push down



Specific data structure

•
$$\mathcal{D}(\underline{x}_{m_2}) = \mathcal{D}(\overline{x}_{m_2}) = \{73, 74, 76, 99\}, \mathcal{D}(\underline{x}_{m_3}) = \mathcal{D}(\overline{x}_{m_3}) = \{28, 52, 74, 76, 80\}$$



Filtering rules

Proposition 1

$$\begin{array}{l} \mathsf{Let}\; \mathcal{V}^* = \langle [\min(\mathcal{D}(\underline{x}_1)), \max(\mathcal{D}(\overline{x}_1))], \dots, [\min(\mathcal{D}(\underline{x}_{|\mathcal{M}|})), \max(\mathcal{D}(\overline{x}_{|\mathcal{M}|}))] \rangle \\ \left\{ \begin{array}{l} v_{g,m} \notin \mathcal{D}(\underline{x}_m), \\ v_{g,m} \notin \mathcal{D}(\overline{x}_m) \end{array} \text{ if } : \end{array} \right\} \begin{array}{l} \exists \; m' \in \mathcal{M}, m \neq m', v_{g,m'} < \min(\mathcal{D}(\underline{x}_{m'})) \lor v_{g,m'} > \max(\mathcal{D}(\overline{x}_{m'})) \\ \land \\ \forall g' \in \mathcal{G}, \; g \neq g' \text{ such that } g' \text{ is covered by } \mathcal{V}^*, v_{g,m} \neq v_{g',m} \end{array}$$

Example

During the search we have:

•
$$\mathcal{D}(\underline{x}_{m_1}) = \mathcal{D}(\overline{x}_{m_1}) = \{153, 155, 167, 190\}$$

$$\blacktriangleright \ \mathcal{D}(\underline{x}_{m_2}) = \mathcal{D}(\overline{x}_{m_2}) = \{73, 74, 76, 99\}$$

•
$$\mathcal{D}(\underline{x}_{m_3}) = \mathcal{D}(\overline{x}_{m_3}) = \{28, 52, 74, 76, 80\}$$

		Height	Weight	Age	
		m_1	m_2	m_3	
	g_1	155	74	80	
Γ	g_2	176	99	74	Γ
	g_3	167	73	28	
	g_4	153	76	52	
	g_5	190	99	76	

Table: Numerical dataset ${\cal N}$

Filtering rules

Proposition 1

$$\begin{array}{l} \text{Let } \mathcal{V}^* = \langle [\min(\mathcal{D}(\underline{x}_1)), \max(\mathcal{D}(\overline{x}_1))], \dots, [\min(\mathcal{D}(\underline{x}_{|\mathcal{M}|})), \max(\mathcal{D}(\overline{x}_{|\mathcal{M}|}))] \rangle \\ \left\{ \begin{array}{l} v_{g,m} \notin \mathcal{D}(\underline{x}_m), \\ v_{g,m} \notin \mathcal{D}(\overline{x}_m) \end{array} \text{ if } : \end{array} \right. \left\{ \begin{array}{l} \exists \ m' \in \mathcal{M}, m \neq m', v_{g,m'} < \min(\mathcal{D}(\underline{x}_{m'})) \lor v_{g,m'} > \max(\mathcal{D}(\overline{x}_{m'})) \\ \land \\ \forall g' \in \mathcal{G}, \ g \neq g' \text{ such that } g' \text{ is covered by } \mathcal{V}^*, v_{g,m} \neq v_{g',m} \end{array} \right. \end{aligned}$$

Example

During the search we have:

$$\mathcal{D}(\underline{x}_{m_1}) = \mathcal{D}(\overline{x}_{m_1}) = \{153, 155, 167, 190\}$$

$$\mathcal{D}(\underline{x}_{m_2}) = \mathcal{D}(\overline{x}_{m_2}) = \{73, 74, 76, 99\}$$

$$\mathcal{D}(\underline{x}_{m_3}) = \mathcal{D}(\overline{x}_{m_3}) = \{28, 52, \mathbf{74}, 76, 80\}$$

Removing 74 from $\mathcal{D}(\underline{x}_{m_3})$ and $\mathcal{D}(\overline{x}_{m_3})$

	Height	Weight	Age
	m_1	m_2	m_3
g_1	155	74	80
g_2	176	99	74
g_3	167	73	28
g_4	153	76	52
g_5	190	99	76

Table: Numerical dataset ${\cal N}$

Filtering rules

Proposition 2

Let
$$m, m' \in \mathcal{M}$$
, $m \neq m' \begin{cases} v_{g,m} \notin \mathcal{D}(\underline{x}_m) \text{ if: } v_{g,m} > max(join(x_{m'}, \underline{x}_m)) \\ v_{g,m} \notin \mathcal{D}(\overline{x}_m) \text{ if: } v_{g,m} < min(join(x_{m'}, \overline{x}_m)) \end{cases}$

Example

During the search the domain of $\mathcal{D}(\overline{x}_2)$ has changed. We have:

	Hei	ght	We	ight	Age		
	m_1		m2		m_3		
domains	$\mathcal{D}(\underline{x}_1) \mathcal{D}(\overline{x}_1)$		$\mathcal{D}(\underline{x}_2)$	$\mathcal{D}(\overline{x}_2)$	$\mathcal{D}(\underline{x}_3)$	$\mathcal{D}(\overline{x}_3)$	
g_1	155	155	74	74 99	80	80	
g_2	176	176	99		74	74	
g_3	167	167	73	73	28	28	
g_4	153	153	76	76	52	52	
g_5	190 190		99	99	76	76	

Filtering rules

Proposition 2

Let
$$m, m' \in \mathcal{M}, m \neq m' \begin{cases} v_{g,m} \notin \mathcal{D}(\underline{x}_m) \text{ if: } v_{g,m} > max(join(x_{m'}, \underline{x}_m)) \\ v_{g,m} \notin \mathcal{D}(\overline{x}_m) \text{ if: } v_{g,m} < min(join(x_{m'}, \overline{x}_m)) \end{cases}$$

Example

During the search the domain of $\mathcal{D}(\overline{x}_2)$ has changed. We have:

 Propagate the partial domain knowledge on x
₂ to other domains

	Hei	ght	We	ight	Age		
	m	ι_1	n	n2	m_3		
domains	$\mathcal{D}(\underline{x}_1) \mid \mathcal{D}(\overline{x}_1)$		$\mathcal{D}(\underline{x}_2)$	$\mathcal{D}(\overline{x}_2)$	$\mathcal{D}(\underline{x}_3)$	$\mathcal{D}(\overline{x}_3)$	
g_1	155	155	74	74	80	80	
g_2	176	176	99	99	74	74	
g_3	167	167	70	73	28	28	
g_4	153	153	76	76	52	52	
g_5	190	190	90	99	76	76	

Filtering rules

Proposition 2

Let
$$m, m' \in \mathcal{M}, m \neq m' \begin{cases} v_{g,m} \notin \mathcal{D}(\underline{x}_m) \text{ if: } v_{g,m} > max(join(x_{m'}, \underline{x}_m)) \\ v_{g,m} \notin \mathcal{D}(\overline{x}_m) \text{ if: } v_{g,m} < min(join(x_{m'}, \overline{x}_m)) \end{cases}$$

Example

During the search the domain of $\mathcal{D}(\overline{x}_2)$ has changed. We have:

- Propagate the partial domain knowledge on x
 ₂ to other domains
- $i join(\overline{x}_2, \overline{x}_3) = join(\overline{x}_2, \underline{x}_3) = \{28, 52, 76\}$

	Hei	ght	We	ight	Age		
	n	\imath_1	m	n2	m_3		
domains	$\mathcal{D}(\underline{x}_1) \mid \mathcal{D}(\overline{x}_1)$		$\mathcal{D}(\underline{x}_2)$	$\mathcal{D}(\overline{x}_2)$	$\mathcal{D}(\underline{x}_3)$	$\mathcal{D}(\overline{x}_3)$	
g_1	155	155	74	74	80	80	
g_2	176	176	99	99	74	74	
g_3	167	167	- 70	73	28	28	
g_4	153	153	76	76	52	52	
g_5	190 190		90	99	76	76	

Filtering rules

Proposition 2

Let
$$m, m' \in \mathcal{M}, m \neq m' \begin{cases} v_{g,m} \notin \mathcal{D}(\underline{x}_m) \text{ if: } v_{g,m} > max(join(\underline{x}_{m'}, \underline{x}_m)) \\ v_{g,m} \notin \mathcal{D}(\overline{x}_m) \text{ if: } v_{g,m} < min(join(\underline{x}_{m'}, \overline{x}_m)) \end{cases}$$

Example

During the search the domain of $\mathcal{D}(\overline{x}_2)$ has changed. We have:

- Propagate the partial domain knowledge on x
 ₂ to other domains
- $i join(\overline{x}_2, \overline{x}_3) = join(\overline{x}_2, \underline{x}_3) =$ $\{28, 52, 76\}$
- ► 80 > $max(join(\overline{x}_2, \underline{x}_3))$ then remove 80 from $\mathcal{D}(\underline{x}_3)$

	Hei	ght	We	ight	Age		
	n	ι_1	n	n2	m_3		
domains	$\mathcal{D}(\underline{x}_1) \mid \mathcal{D}(\overline{x}_1)$		$\mathcal{D}(\underline{x}_2)$	$\mathcal{D}(\overline{x}_2)$	$\mathcal{D}(\underline{x}_3)$	$\mathcal{D}(\overline{x}_3)$	
g_1	155	155	74	74	80	80	
g_2	176	176	99	99	74	74	
g_3	167 167 153 153 190 190		- 70	73	28	28	
g_4				— 76 —	52	52	
g_5			99		76	76	

Example

Let $\theta = 2$ and suppose the following variables domains:

$$\mathcal{D}(\underline{x}_{m_1}) = \{176, 190\}, \ \mathcal{D}(\overline{x}_{m_1}) = \{176, 190\}$$

$$\mathcal{D}(\underline{x}_{m_2}) = \mathcal{D}(\overline{x}_{m_2}) = \{73, 74, 76, 99\}$$

$$\mathcal{D}(\underline{x}_{m_3}) = \mathcal{D}(\overline{x}_{m_3}) = \{28, 52, 74, 76, 80\}$$

Second Model using Global Constraints

Filtering rules

Proposition 3

Let $m \in \mathcal{M}$, and $\mathcal{V}^p = \langle [\min(\mathcal{D}(x_i)), \max(\mathcal{D}(\overline{x}_i))] \rangle$

- $a_m \notin \mathcal{D}(\underline{x}_m)$ if $freq(\mathcal{V}^p + + [a_m, \max(\mathcal{D}(\overline{x}_m))]) < \theta$
- $b_m \notin \mathcal{D}(\overline{x}_m) \text{ if } freq(\mathcal{V}^p + + [\min(\mathcal{D}(\underline{x}_m)), b_m]) < \theta$

Height Weight Age m_1 m_2 m_3 155 80 74 q_1 176 99 74 q_2 167 73 28 a_2 153 76 52 q_A 190 99 76 q_5

Table: Numerical dataset \mathcal{N}

D. Bekkoucha & al.

Second Model using Global Constraints

Filtering rules

Proposition 3

Let $m \in \mathcal{M}$, and $\mathcal{V}^p = \langle [\min(\mathcal{D}(\underline{x}_i)), \max(\mathcal{D}(\overline{x}_i))]$

- $\qquad \qquad \bullet \quad a_m \notin \mathcal{D}(\underline{x}_m) \text{ if } freq(\mathcal{V}^p \quad + + \quad [a_m, \max(\mathcal{D}(\overline{x}_m))]) < \theta \\$
- $b_m \notin \mathcal{D}(\overline{x}_m) \text{ if } freq(\mathcal{V}^p + + [\min(\mathcal{D}(\underline{x}_m)), b_m]) < \theta$

Example

Let $\dot{\theta} = 2$ and suppose the following variables domains:

$$\mathcal{D}(\underline{x}_{m_1}) = \{176, \mathbf{190}\}, \ \mathcal{D}(\overline{x}_{m_1}) = \{176, 190\}$$

$$\mathcal{D}(\underline{x}_{m_2}) = \mathcal{D}(\overline{x}_{m_2}) = \{73, 74, 76, 99\}$$

$$\mathcal{D}(\underline{x}_{m_3}) = \mathcal{D}(\overline{x}_{m_3}) = \{28, 52, 74, 76, 80\}$$

- $freq(\langle [176, max(\overline{x}_m)] + \mathcal{V}^p \rangle) = 2 \ge \theta$ then 176 is maintained in $\mathcal{D}(\underline{x}_{m_1})$

- $freq(\langle [190, max(\overline{x}_m)] + + \mathcal{V}^p \rangle) = 1 < \theta$ then Filter 190 from $\mathcal{D}(\underline{x}_{m_1})$

	Height	Weight	Age
	m_1	m_2	m_3
g_1	155	74	80
g_2	176	99	74
g_3	167	73	28
g_4	153	76	52
g_5	190	99	76

Table: Numerical dataset \mathcal{N}

Model complexity

- ▶ The push down and push up has a worst case complexity of O(|G|). This is simplified from $O(S^{log_S|G|})$, where S is the maximal number of children of a parent node.
- The GC4CIP worst case complexity is $\mathcal{O}(|\mathcal{M}| \cdot |\mathcal{G}|^3 \cdot log_S |\mathcal{G}|)$

Experimental protocol

Configuration:

- ORTools CP-Solver version 9.0 (C++)
- 5 hours timeout
- ► 512 GB of memory limit

Benchmark of numerical datasets:

	NT	AP	BK	Cancer	СН	Yacht	LW
$ \mathcal{M} $	3	5	5	9	8	7	10
$ \mathcal{G} $	130	135	96	116	209	308	189
#distinct values	67	674	313	900	396	322	253
	Interordinal scaled datasets						
#Binary attributes	134	1348	626	1800	792	644	506

Experimental protocol

Compared approaches

We compared our approaches **CP4CIP** and **GC4CIP** to:

Dedicated approaches

MinIntChange: a closed interval pattern mining approach that does not require any pre-post processing step

Declarative approaches

- **CP4IM:** a reified model for mining closed patterns (itemsets) from binary data.
- CLOSEDPATTERN: a global constraint for mining closed patterns (itemsets) from binary data.

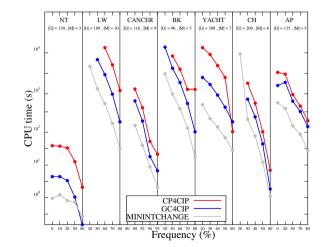
Note: The comparison with **CP4IM** and **CP4CIP** requires **pre-processing** and **post-processing** steps to handle numerical data.

Experimental results

	\mathcal{N}	θ	# Sol				CPU Time (s			
		(%)	(≈)	CP4IM	CLOSEDPATTERN	p-p-processing	ср4ім+р-р-р	CLOSEDPATTERN+p-p-p	CP4CIP	GC4CIP
		80	10 ⁶	1840.21	148.91	176.65	2016.86	325.56	271.10	89.63
	¥	70	107	15132.87	1457.99	1326.58	16459.45	2784.57	1770.22	655.63
	-	60	107	TO	8643.34	6713.25	TO	15356.59	7311.24	2879.54
		50	10^{8}	TO	28302.62	19307.70	TO	47610.32	18471.23	7780.65
		20	10^{8}	TO	TO	TO	TO	TO	TO	34598.10
	L_	95	10^{4}	170.14	6.19	13.69	183.83	19.88	18.42	5.80
	Cancer	94	10^{5}	568.00	18.21	38.88	606.88	57.09	45.43	15.66
have	Car	92	10^{5}	6944.07	294.14	542.82	7486.89	836.96	486.87	190.84
	Ŭ	90	10^{6}	29787.19	1190.42	2348.45	32135.64	3538.87	1806.19	786.25
nen other		80	10 ⁵	783.92	175.02	55.21	839.13	230.23	28.55	19.18
	ΑÞ	70	10^{6}	5909.86	189.30	415.76	6325.62	605.06	194.64	128.83
	<	60	10^{6}	18479.87	7995.84	1275.85	19755.72	9271.69	548.12	373.01
		50	107	TO	23252.89	2964.71	то	26217.60	1223.79	770.83
		20	107	TO	43199.73	3052.93	TO	46252.66	5129.20	2891.55
ns		0	10^{7}	TO	TO	TO	TO	TO	5867.37	2343.98
	Ю	95	106	25.59	1.16	29.93	55.52	31.09	5.98	1.60
nstances		90	10^{5}	608.94	36.58	224.70	833.64	261.28	89.81	38.42
		85	10^{6}	4753.35	331.08	835.24	5588.59	1166.32	671.49	256.86
		80	10^{6}	19154.96	1444.64	18009.40	37164.36	19454.04	2739.85	890.82
		50	TO	TO	TO	TO	TO	TO	то	TO
		80	106	1612.68	96.91	174.46	1787.14	271.37	1638.03	181.81
	N	70	10^{6}	12904.12	757.02	1279.34	14183.34	2036.36	9886.90	1269.50
ns	-	60	107	TO	3436.91	5236.91	то	8673.82	33 148.24	4,965.20
		50	10^{8}	TO	11060.23	15588.10	то	26648.33	то	14298.64
all		20	TO	TO	TO	TO	TO	TO	TO	TO
		80	10 ³	0.87	0.06	0.07	0.97	0.13	1.80	0.13
	Ę	50	10^{4}	7.08	0.41	0.50	7.58	0.91	11.01	0.91
	~	20	10^{4}	28.13	1.53	1.83	29.96	3.36	28.77	2.89
		10	10^{5}	41.75	2.51	2.61	44.36	5.12	32.50	4.02
		0	10^{5}	62.48	2.88	3.13	65.61	6.01	33.72	3.81
		80	104	40.12	2.03	83.20	123.32	85.23	90.92	2.45
	Yacht	50	106	7277.85	336.03	268.28	7546.13	604.31	4090.63	181.63
	, ×	40	106	30519.66	1282.32	727.09	31246.75	2009.41	9380.16	501.52
		30	107	TO	4265.71	1695.63	TO	5961.34	20464.22	1179.13
		20	107	TO	12898.20	2874.08	TO	15772.28	33294.36	2487.68
		0	107	TO	TO	TO	TO	TO	TO	4116.60

- CP4CIP and GC4CIP have better scalability then other approaches
- CP4CIP outperforms
 CP4IM in most of instance
- GC4CIP outperforms CLOSEDPATTERN in all instances

Experimental results



D. Bekkoucha & al.

- ► We presented two declarative approaches for mining closed interval patterns:
 - A reified model denoted CP4CIP
 - A global constraint denoted **GC4CIP**
- We demonstrated the efficiency of mining interval patterns directly from numerical data

- ► Improve the filtering algorithm of GC4CIP with a different data structure
- Reduce the amount of mined Interval Patterns by:
 - mining diversified interval patterns
 - mining patterns according to a user feedback (interactive pattern mining)

The end

Thank you

Any Questions ?

djawad.bekkoucha@unicaen.fr

D. Bekkoucha & al.